This post outlines how | got pnpm workspaces to work in a monorepo containing React and
React Native projects. | will explain key components in our pnpm workspaces configuration and
walk through the errors | got trying to get this to work.
Prerequisite Knowledge
e In pnpm workspaces, every module’s packages are stored at a top-level
node_modules/.pnpm folder (the pnpm store).
e Inindividual project folders, node_modules contains symlinks to this pnpm store

Overview of our pnpm Workspaces Configuration

We have a shared package in ‘packages/". We import this package using “<package-name>: *'
in package.json.

We use Turbo for running projects and installing dependencies efficiently.

#i# Errors | Encountered and Fixes
Error: “Invalid hook call’

Fix: Some packages like React and React Native must be pinned to specific versions. This part
of our metro.config.js fixes this (Singleton Pinning)

onst singletons = [
'react’',

'react-native',

.reduce ((acc, name) => {

.resolve (projectRoot, node modules', name);

return acc;

Error: Missing transitive dependencies

http://metro.config.js

Fix: Make sure to not use "disableHierarchicalLookups: true’. This will prevent pnpm from
locating packages in the pnpm store. This part of our Metro config solved this problem:

true;

Exports = true;

// Resolve from app's node modules first, then root .pnpm for transitive deps

config.resolver.n) aths = [
path.resolve (projectRoot, 'node modules'),
path.resolve (monorepoRoot, 'node modules'),

path.resolve (monorepoRoot, 'node modules/.pnpm/node modules'),

Error: Missing non-transitive dependency

Fix: Install the packages with "'npx expo install’, this will make sure compatible versions with
your Expo version are used.

